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Abstract

When the melt or solution solidifies a constitutionally supercooled mushy layer is frequently formed ahead of the phase transition
boundary. This leads to nucleation and growth mechanisms of newly born solid particles within a mush. The latter is responsible for
the structures and properties appearing in the crystal. The process of solidification with a supercooled mushy layer is analytically
described on the basis of two joint theories of directional and bulk crystallization. Such characteristics as the constitutional supercooling,
the solid fraction and the radial density distribution function of solid particles in a mushy layer are found. The complex structure of the
non-equilibrium mushy layer is completely recognized.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Theoretical studies of the solidification processes in melts
and solutions are usually based on the thermodiffusion Ste-
fan-type models with a planar front. In the course of inves-
tigation this model needs to find the concentration of the
impurity and temperature of the matter both in the liquid
and the growth crystal. The analyses are complicated by
the need to apply boundary conditions at solid/liquid inter-
face which are evolving with time and whose position must
be found as part of the calculation. The temperature of the
phase transition (liquidus) is variable and unknown too. It
is dependent on the local impurity concentration and deter-
mined from the phase diagram [1,2]. Some Stefan-type
problems have been solved completely in simple geometries
in classical studies (for example, solidification from a plane
wall, inward and outward crystallization processes of cylin-
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ders and spheres, is considered in Refs. [3–5]). In these early
studies the domain of crystallization is divided into two
regions: melt (liquid phase) and crystal (solid phase) sepa-
rated by the moving boundary of phase transition (solidifi-
cation front). However, the solidification of binary melts is
rather frequently accompanied by the appearance of super-
cooled regions, i.e., regions in the liquid phase, the temper-
ature of which is lower than the equilibrium temperature of
phase transition, which depends on the local impurity con-
centration. One of the supercooling mechanisms termed
‘‘constitutional” was revealed for the first time by Ivantsov
[6]. This mechanism occurs in the following manner. When
the front moves into the liquid and replaces the solute impu-
rity ahead itself, the solute concentration increases. As a
result, the phase transition temperature decreases at the
front (accordingly to the phase diagram) and is an increas-
ing function with increasing distance from the phase inter-
face. When the liquid temperature goes below its freezing
point a constitutionally supercooled region arises ahead of
the front. Elements of the new phase may start spontaneous
generation in supercooled zone in the form of dendrites or
particles by means of bulk nucleation. In other words, this

mailto:Danil.Aseev@usu.ru
mailto:Dmitri.Alexandrov@usu.ru
mailto:Dmitri.Alexandrov@usu.ru


Nomenclature

f radial density distribution function of solid
particles

gs and gl temperature gradients in the crystal and the
melt

LV latent heat of crystallization
r radius of crystal in the mush
V solidification speed
z spatial coordinate

Greek symbols
Dh constitutional supercooling
u volume fraction of solid crystals

k thermal conductivity
h temperature
hp phase transition (liquidus) temperature
r impurity concentration

Subscripts

‘s’ and ‘l’ stand for the properties of solid and liquid
phases, respectively
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region (termed ‘‘two-phase” or ‘‘mushy” layer) is consisted
of the mixed solid and liquid phases.

Solidification problems of binary alloys in the presence
of supercooled regions have been studied by a number of
investigators (see, among others, [2,7–12]). However, with
a few exceptions, these works are devoted to analytical
and numerical studies of a mushy layer treated as quasi-
equilibrium. The latter implies that the constitutional
supercooling is entirely compensated by a latent heat of
crystallization, which is eliminated by growing elements
of the new phase. As a result, the mushy layer temperature
attains the liquidus temperature. This assumption essen-
tially simplifies the problem under consideration. However,
solutions obtained in this manner cannot describe the inter-
nal and topological structures of a mushy layer. Further-
more, strictly speaking, the constitutional supercooling
ahead of the phase transition front does not disappear
completely. For this reason, in order to construct the the-
ory of solidification in the presence of a supercooled
region, the theoretical model must include some kinetic fac-
tors responsible for the formation of elements of the new
phase in a mushy layer. In this paper, we develop the the-
ory of directional solidification of binary alloys with a
mushy layer where the supercooling plays a predominant
role.
2. Governing equations for a mush

Let us consider the steady-state crystallization process
associated with the frame of reference moving with a con-
stant speed V along axis z. A mushy layer separates purely
solid and liquid phases. In this model we imagine that the
mush/liquid interface, at which the temperature is equal to
the local liquidus temperature, can be maintained at the
fixed horizontal position z = 0. The solid/mush interface
z = �h is left as a free boundary to be determined as a part
of the solution.

The temperature h and the composition r of the intersti-
tial liquid are assumed to be uniform over lengthscales typ-
ical of the intercrystal spacing. Then differential equations
describing conservation of heat and solute can be written as
(e.g. [2,7,8,13,14])

d

dz
k

dh
dz

� �
� VLV

du
dz
¼ 0; ð1Þ

� V
d

dz
ðð1� uÞrÞ ¼ d

dz
D

dr
dz

� �
þ krV

du
dz
: ð2Þ

The volume fraction of solid crystals in mush is denoted by
u, k is the impurity distribution factor (k represents the
ratio of the solute concentration in the solid and liquid
phases at the phase transition boundary), LV is the latent
heat of solidification per unit volume. The thermal conduc-
tivity k and the solutal diffusivity D are functions of u:
k(u) = kl(1 � u) + ksu, D(u) = Dl(1 � u), where subscripts
‘s’ and ‘l’ denote properties of the solid and liquid phases,
respectively (e.g. [1,2,9,14,15]). We neglect the right hand
side of Eq. (1), because the relaxation time sa = l2/a of tem-
perature fields is essentially less then the relaxation time
sD = l2/Dl of the diffusion field, i.e. sa/sD � 10�3–10�4 (l
is a characteristic length scale, and a is the temperature dif-
fusivity coefficient). The temperature fields in crystal and
melt phases will be governed by constant temperature gra-
dients gs and gl. The boundaries solid/mush (z = �h) and
mush/liquid (z = 0) are determined from the conditions:
temperatures at these boundaries are equal to the local liq-
uidus temperatures, i.e. supercooling is equal to zero. The
traditional heat and mass balance boundary conditions at
z = 0 and z = �h described in [2,3,7,13] hold true.

It was demonstrated previously that the speed of solidi-
fication can be written in the form [10,12]

V ¼ ksgs � klgl

LV

:

Let us especially emphasize that this speed describes not
only the non-equilibrium regime under consideration but
also the frontal and equilibrium mushy layer regimes stud-
ied previously.

Integrating (1) and keeping in mind that the temperature
gradient is continuous and u = 0 at the mush/liquid inter-
face, we have
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kðuÞ dh
dz
� VLVu ¼ klgl: ð3Þ

Let us use the Scheil equation instead of (2) to describe the
mass transfer in a mush [9]

r ¼ r0

ð1� uÞ1�k ; ð4Þ

where r0 stands for the concentration in the liquid. For-
mula (4) is frequently applied by a number of investigators
(see, among others, [9,16]). It is a good approximation for
the impurity redistribution during the crystal growth for a
wide range of experimental conditions [17]. We use expres-
sion (4) as simplest approximation comprising the effect of
impurity accumulation at the moving phase transition
boundary (the key feature for constitutionally supercooled
mushy layer). Mathematically, this law follows from Eq.
(2) for D = 0.

The local phase transition temperature is determined by
liquidus equation (see, for example, [1,2]) of the linear form
hpðrÞ ¼ h0

p � mr, where m is the liquidus slope coefficient
and h0

p is the freezing point at r = 0. Combining this linear
law and expressions (3) and (4), we arrive at the following
equation for supercooling in a mush Dh(z) = hp(r(z)) � h(z):

� b1

d

dz
Dh ¼ b2 þ u

b3 þ u
þ b4

1

ð1� uÞ2�k

du
dz
;

b1 ¼
ks � kl

VLV

; b2 ¼
klgl

VLV

; b3 ¼
kl

ks � kl

; ð5Þ

b4 ¼ ð1� kÞmr0

ks � kl

VLV

;

with boundary conditions Dh(0) = Dh(�h) = 0. Eq. (5) de-
pends on unknown function u, which characterizes nucle-
ation and growth mechanisms in a mushy layer. How to
express this function in explicit form is discussed below.

3. The interior structure of a mushy layer

In order to describe a mushy layer let us apply the the-
ory of bulk crystallization developed in [18] (see also [13]).
We treat a mush as suspension of spherical solid particles
submerged in a macroscopically homogeneous supercooled
liquid. The nucleation rate of crystal particles written out
in accordance with the Frenkel–Zeldovich theory [19,20]
has the form

I ¼ I� exp � p

Dh2

� �
; ð6Þ

where p is the dimensional Gibbs number and I* is a pre-
exponential factor considered to be known. Solid nuclei
exceeding some critical value tend to further growth
whereas smaller particles vanish [19]. The spherical parti-
cles with radius r undergo a rise in accordance with expres-
sion (e.g. [13,21])

dr
dt
¼ b�Dh

1þ b�ðLV=klÞr
; ð7Þ
where b* stands for the kinetic coefficient. The evolution of
solid particles in a mushy layer is described by a kinetic
equation for density f(t,z, r) as

of
ot
þ o

or
dr
dt

f
� �

¼ 0; ð8Þ

supplemented by the boundary condition of the form

dr
dt

f

����
r¼0

¼ I� exp � p

Dh2

� �
: ð9Þ

Here the critical radius (critical value) of growing crystals is
chosen as zero. Let us express function u in the form

u ¼
Z 1

0

4p
3

r3f ðt; z; rÞdr: ð10Þ

Such possible mechanisms as agglomeration and coales-
cence of particles as a result of their growth and interaction
are not considered by the theory under consideration. The
latter means that the bulk fraction u is limited by a critical
value ucrit < 1, which is responsible for the physically cor-
rect scope of our theory.

In the moving frame of reference equations (7)–(9) take
the following form:

� ð1þ qrÞ dr
dz
¼ b�

V
Dh; ð11Þ

� of
oz
þ b�

V
Dh

o

or
f

1þ qr

� �
¼ 0; ð12Þ

f jr¼0 ¼
I�
b�

1

Dh
exp � p

Dh2

� �
; ð13Þ

where q = b*LV/kl. Now, in equations (11)–(13) and (10),
f = f(z, r) is independent of t.

Eq. (12) supplemented by expressions (13) and fjz=0 = 0
gives

f ¼ 1þ b�
LV

kl

r
� �

gðxðzÞ � yðrÞÞHðxðzÞ � yðrÞÞ; ð14Þ

where the following designations are introduced:

xðzÞ¼ b�
V

Z 0

z
DhðnÞdn; yðrÞ¼

Z r

0

1þb�
LV

kl

r
� �

dr;

gðuÞ¼ I�
b�

1

DhðuÞ exp � p

DhðuÞ2

 !
; HðuÞ—Heaviside function:

From the physical point of view, the Heaviside function
entering in (14) designates that the size of the solid particles
is limited by a maximum value, which corresponds to the
size of the crystals nucleated at the liquid/mush interface
(this size is determined by Eq. (25). Integrating (11) and
taking into account that r = 0 at z = f, we have

r ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2qðxðzÞ � xðfÞÞ

p
� 1Þ=q: ð15Þ

Eq. (15) defines radius r(z) of crystals appearing at point
z = f within a mushy layer.



1 Strictly speaking, u(z) < 0 for m < z < 0. However, from the physical
meaning of u and approximate Laplace method, we conclude that
u(z) � 0 within this interval.
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4. How to calculate the constitutional supercooling within a

mush?

Expressions (14) and (15) determine unknowns entering
into the solid fraction u from (10). However, it should be
noted that Eq. (10) does not express u(z) in explicit form
because Dh(z) is dependent of u accordingly to (5). In order
to solve this nonlinear problem let us adapt the method
detailed in Ref. [13] for single-component supercooled
liquids.

So, let us introduce new variable f instead of r for any
constant z by means of expression x(f) = x(z) � y(r). It
follows here from that

b�
V

DhðfÞdf ¼ ð1þ qrÞdr;

and limits r = 0 and r = rjf=0 of integration transform to
corresponding limits f = z and f = 0 in terms of f. Replac-
ing r by f in (10) and taking into consideration (14) and
(15), we arrive at

uðzÞ ¼ 4p
3

I�
V

Z 0

z
wðz; fÞ expðpSðfÞÞdf; ð16Þ

where wðz; fÞ ¼ q�3ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2qðxðzÞ � xðfÞÞ

p
� 1Þ3, S(f) =

�1/Dh(f)2.
Parameter p (expressed in (�C)2) entering in Eq. (16) is

vastly larger than Dh2 (see Ref. [21] and Fig. 1), which is
equivalent of high activation energies of the nucleation
process. In this case it is natural to approximately evaluate
the integral in equation (16) by the familiar Laplace
method [22,23]. How to find a point of maximum superco-
oling within a mush in order to apply this method will be
our initial concern. We set derivative Dh0(z) in (5) equal
to zero then we solve the differential equation for u(z)
obtained in this manner:

b2 þ u
b3 þ u

þ b4
1

ð1� uÞ2�k

du
dz
¼ 0:

As a result, we come to the following condition for point m
where the constitutional supercooling attains its maximum

m ¼ RðuÞ

¼ � b4

1� k
1

ð1� uÞ1�k 1þ b3 � b2

b2 � 1
F k � 1; 1; k;

1� u
b2 � 1

� �� �

þ b4

1� k
1þ b3 � b2

b2 � 1
F k � 1; 1; k;

1

b2 � 1

� �� �
; ð17Þ

where F ða; b; c; xÞ ¼ 1þ
P1

k¼1
ðaÞkðbÞk
ðcÞk

xk

k!
is the hypergeomet-

ric function [24].
Keeping only the principal term of the asymptotic

expansion of integral in (16), we have (see, among others,
[22,23])

uðzÞ ¼ aðmÞ � wðz; mÞ;

aðmÞ ¼ 4p
3

I�
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� p

p
Dh3ðmÞ
Dh00ðmÞ

s
exp � p

Dh2ðmÞ

 !
: ð18Þ
Expression (18) shows that u(m) vanishes (since w(m,m) = 0).
Since function u(z) decreases (it is easily seen by differenti-
ation of (16)) u(z) � 0 at m 6 z 6 0.1 Keeping in mind the
latter we get from (5)

DhðzÞ ¼ �glz; m 6 z 6 0: ð19Þ

Substituting the linear supercooling in the form of (19) into
Eq. (16) at z = m, we find u at point m:

uðmÞ ¼ 4p
3

I�
V

Z 0

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q2
þ gl

q
b�
V
ðm2 � f2Þ

s
� 1

q

 !3

� exp � p
g2

l

1

f2

� �
df:

Further, substitution of u(m) into expression (17) gives the
following transcedental equation for point m of maximal
supercooling

m ¼ RðuðmÞÞ: ð20Þ
A non-trivial root of this equation corresponds to the coor-
dinate of the maximal supercooling point in a mush (we do
not consider root m = 0 because this case contradicts the
boundary condition Dh(0) = 0 meaning absence of super-
cooling at the mush/liquid interface).

The second derivative Dh
0 0
(m) entering in denominator of

a(m) from (18) turns to zero. To remedy this, we again cal-
culate integral (16) by the Laplace method within interval
�h 6 z 6 m for the maximum boundary point z = m [23].
The result is

uðzÞ ¼ bðmÞ � wðz; mÞ;

bðmÞ ¼ � 4p
3

I�
V

m3

2p
g2

l exp � p

ðglmÞ
2

 !
:

Thus, the solid fraction u(z) within a mush takes the form

uðzÞ ¼
0 for m 6 z 6 0;

bðmÞ � wðz; mÞ for � h 6 z < m:

�
ð21Þ

Now let us rewrite Eq. (5) in terms of variable xm

xm ¼ xðzÞ � xðmÞ ¼ b�
V

Z m

z
DhðnÞdn;

d

dz
¼ dxm

dz
d

dxm
¼ � b�

V
Dh

d

dxm
: ð22Þ

As a result, we conclude that the constitutional super-
cooling inside the mushy layer part �h 6 z 6 m is governed
by equation

DhðxmÞ � Dh0ðxmÞ ¼ �c1

1

ð1� uÞ2�k

du
dxm

DhðxmÞ þ c2

b2 þ u
b3 þ u

;

ð23Þ
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where c1 = b4/b1, c2 = V/(b*b1), u = u(xm) = bw(xm),
wðxmÞ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2qxm

p
� 1Þ3=q3. Changing z from m to �h

we see that xm varies from 0 to a certain point xh. Putting
z = m (or xm = 0) in (19) we find the boundary condition
Dh(0) = �glm required to solve Eq. (23). Thus, the moving
boundary problem under consideration is reduced to the
first-order differential equation (23) for the constitutional
supercooling supplemented by the aforementioned bound-
ary condition (Cauchy’s Problem for the Abelian equa-
tion). This equation can be easily integrated numerically.

Equating the liquidus temperature and the temperature
determined at the solid/mush boundary, we get the mushy
layer thickness h. This implies that Dh(xh) = 0. Substitution
of this condition into Eq. (23) leads to expression (b2 + u)/
(b3 + u) = 0. This equality is ruled out for any thermo-
physical parameters (u P 0, b2 > 0, b3 > 0). To overcome
this difficulty, we take u = 1 at xm = xh. The latter means
that the mushy layer material is purely solid at the solid/
mush boundary. This fact completely corresponds to the
bulk crystallization theory (which is used here for kinetic
mechanisms of crystal growth) developed in [18]. In this
case, xh is easily determined by equation b � w(xh) = 1,
whence it follows that

xh ¼
1

2q
ððb�3qþ 1Þ2 � 1Þ:

The spatial coordinate z as a function of xm is found from
(22) as

z ¼ zðxmÞ ¼ m� V
b�

Z xm

0

dn
DhðnÞ : ð24Þ

Thus, the constitutional supercooling in a mushy layer is
completely found. The functional dependence Dh(z) for
m 6 z 6 0 is determined by Eq. (19) and, for �h 6 z 6 m,
it is given in parametric representation as Dh = Dh(xm),
z = z(xm) in accordance with Eqs. (23) and (24), where xm

is changed between 0 and xh. Fig. 1 illustrates how the con-
stitutional supercooling Dh depends on the spatial coordi-
nate z in accordance with the theory under consideration.
It is seen that the supercooling increases as a linear func-
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Fig. 1. The functional dependence of the constitutional supercooling in a
mushy layer of the spatial coordinate (b1 = 0.2 (�C)�1, b2 = 2, b3 = 2, b4 =
5.4 cm, k = 0.1, q = 5 � 104 cm�1, p = 10 (�C)2, b*/V = 2 � 104 (�C)�1,
I*/V = 2 � 104 cm�4).
tion in the vicinity of the mush/liquid boundary (m 6
z 6 0), where u � 0 and nucleation and crystal growth pro-
cesses are almost absent (here we keep in mind increasing
with respect to the distance from the mush/liquid interface
but not in the sense of z). When the supercooling attains its
maximum, newly born solid elements will intensively grow.
As a result, their latent heat approximately compensates
the constitutional supercooling. Further, the supercooling
practically vanishes within the most part of the mushy
layer.

5. Discussions

Fig. 2 demonstrates function u(z) in according with
expression (21). Comparing the model under consideration
and the quasiequilibrium model solved by Alexandrov
[10,11], where the linear liquidus equation holds true within
a mush, one can readily see well-marked differences. So, for
example, a point of inflexion is enlarged in Fig. 2. From
this figure we notice how the solid fraction, u, tends to
unity as the spatial coordinate approaches to the solid/
mush boundary (analytically, this fact is proved by deduc-
ing expression (24)). Let us pay our attention to Eq. (4) for
solute concentration. The theory under consideration is in
contradiction with our common sense at a glance because
r ?1 when u ? 1. To explain the latter let us pay our
attention to expression (4) which describes the solute con-
centration over the liquid phase in a mush. By this is meant
that the impurity amount in the liquid fraction of a mushy
layer is R = (1 � u) � r = r0 � (1 � u)k. This implies, that
the total amount of impurity tends to zero as u ? 1. It
seems quite natural: zero volume is free of material.

From the mathematical point of view the problem under
study is completely solved. However, as noted above, the
kinetic theory of nucleation and crystal growth under ques-
tion is physically correct if the solid fraction is less than its
critical value, that is, u < ucrit < 1. In other words, it means
that our solutions are suitable only if z > zcrit, where zcrit

corresponds to ucrit. In order to describe the regime for
�h < z < zcrit, a kinetic theory taken into consideration
agglomeration and recrystallization mechanisms (principal
for final stages of bulk crystallization) must be used [13].
However, we suggest another approach. The well-known
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Fig. 2. The bulk fraction of crystals u(z) in a mushy layer (m = �0.28 cm).
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Fig. 5. Plot of rmax vs. z in accordance with Eq. (25).
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theory of the quasiequilibrium mushy layer, where the con-
stitutional supercooling is negligible (e.g. [1,2,8,10–12]) can
be used for vanishing supercoolings and corresponding
values of z < zeq (see Fig. 1, where Dh � 0 if z 6 zeq �
�0.35 cm). Thus, the non-equilibrium mushy layer is con-
ditionally divided into two parts (see Fig. 3). The constitu-
tional supercooling is essentially non-zero value within the
first of these parts adjoining to the melt (zeq [ z < 0) while
it is more or less entirely compensated by the latent heat of
solidification, which is released during crystallization pro-
cess, within the second of them, �h < z [ zeq, adjoining
to the crystal. This circumstance enables us to use the
quasiequilibrium theory suggested in [7,8] within the sec-
ond region. The first region is also divided into two parts
(see Figs. 1 and 3): solid phase elements practically absent
(u � 0) within the region adjacent to the melt (m 6 z 6 0),
which corresponds to the linear supercooling in accordance
with (19), whereas, within the other region (zeq [ z < m),
these elements undergo intensive growth, which compen-
sates the constitutional supercooling.

Fig. 4 demonstrates the radial density distribution func-
tion of solid particles in a mushy layer for z = �0.29,
�0.295, �0.3 and z = �0.35 cm. The maximum radius of
crystals in a mushy layer can be easily found by equating
the argument of the Heaviside function in (14) to zero.
The obtained quadratic equation gives
Fig. 3. A structure of non-equilibrium mushy layer.
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Fig. 4. Plot of f(z, r) (cm�4) as a function of r (cm) for z = �0.29, �0.295,
�0.3 and �0.35 cm.
rmax ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2qxm

p
� 1Þ=q: ð25Þ

Fig. 5 illustrates the maximum radius of crystals as a func-
tion of the spatial coordinate. With reference to Fig. 5, it
can be seen that decreasing the constitutional supercooling
from the mush/liquid boundary in �z direction the growth
rate of maximum radius decreases too. An enlargement of
this behavior is clearly seen in Fig. 5. If z [ �0.35 cm,
where the supercooling tends to zero accordingly to
Fig. 1, function rmax increases much slowly in comparison
with interval �0.35 < z < m, where this function increases
rather abruptly (here, as before, we keep in mind increasing
with respect to the distance from the mush/liquid interface
but not in the sense of z). This result immediately follows
from Eq. (7), which shows that the growth rate of particles
is directly proportional to the constitutional supercooling
Dh.

6. Concluding remarks

The present study is concerned with directional solidifi-
cation processes of binary melts with special attention to
kinetic and growth mechanisms of solid particles treated
on the basis of the bulk crystallization theory [13]. The
model under consideration consists of integro-differential
equations (1), (2), (11)–(13) supplemented by correspond-
ing boundary conditions. This model is solved analytically
on the basis of original and reasonable suggestions and
hypotheses. In particular, the constitutional supercooling
(Fig. 1), the solid fraction (Fig. 2) and the radial density
distribution function of solid particles in a mushy layer
(Fig. 4) are found. Unfortunately, the kinetic theory of
nucleation and crystals growth under question imposes
the restriction that the obtained solutions are inapplicable
for sufficiently large values of u. However, our approach
for the first time allows to understand the physical struc-
ture of a mushy layer and its possible properties keeping
in mind that the constitutional supercooling does not
disappear.
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